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Abstract

The one-temperature model for thermal dispersion in a porous medium is based on the notion of an average ‘enthalpic’ temperature,
solution of an energy equation of the convection–diffusion type. It requires the determination of thermal dispersion coefficients. The
functional form of the correlations that relate them to dimensionless groups is established as well as the limits of this model. An exper-
imental bench has been built to measure these coefficients for water or air flow through a bed of glass beads. They are estimated through
a Bayesian inversion of several local temperature measurements, with uncertainty on their location, and with the use of the analytical
solution of a corresponding model. Results are presented in terms of variation of these two coefficients with the Reynolds or Péclet num-
bers and with the nature of the fluid and corresponding correlations are given.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal dispersion in a porous medium results from the
combined effects of heat diffusion in both the fluid and
solid phases and thermal convection in the fluid. We con-
sider here a homogeneous porous medium only, that is a
porous medium whose constituents and microscopic (local)
structure do not depend on the region that is considered. In
the absence of convection in such a medium, conduction
can be characterized, at the mesoscopic scale, by a single
equivalent or effective conductivity if the medium is isotro-
pic at the local scale: a thermal disturbance diffuses the
same way in all the directions. This single parameter
depends on the thermophysical properties of the compo-
nents, on the porosity of the medium, on the nature and
the geometry of the grains, etc. Things change when the
fluid phase starts to move under the effect of an external
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cause (gravity, pump, fan, etc.): one observes that heat is
transferred mainly in the direction of the average flow.
Simple addition of a convective term in the energy equation
(of the equivalent homogenized medium) does not allow to
take into account the hydrodynamic effects properly. It is
necessary to add dispersion terms that are not based on
an isotropic conductivity but rather on a non spherical dis-
persion tensor whose coefficients depend in particular on
the local Darcy or filtration velocity of the flow.

Modelling and simulation of simultaneous conduction
and convection at the scale of the pores requires the solu-
tion of the local heat equations written for the two phases
(fluid and solid) and on the Navier–Stokes equations in the
fluid. The difficulties related to the solution of these equa-
tions are very large: they are not only numerical but also
stem from the absence of precise knowledge of the local
structure of the material. A more practical approach con-
sists in seeking a characterization of the medium at the
mesoscopic scale that results from some kind of averaging
of the variables of the local model (velocity and tempera-
ture fields). In order to derive such a reduced model for
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Nomenclature

a thermal diffusivity (m2 s�1)
asf specific area (m�1)
b bias
cp heat capacity (J K�1 kg�1)
d, D particle diameter and diameter of the averaging

sphere (m)
e, f, k, m Green’s functions
h, h1 impedance (J m�2 K), or heat exchange coeffi-

cient (W m�2 K)
g, k, ‘ functions
H volumetric enthalpy (J m�3) or Heaviside func-

tion
L macroscopic length (m)
n normal unit vector
p Laplace parameter (m�1)
p̂ driving pressure (Pa)
Pe particulate Péclet number (uDd/af)
Pr Prandtl number (cpl/k)
q normalized square root of the Laplace parame-

ter
qs?f volumetric heat power exchanged between solid

and fluid phases (W m�3)
Q lineic heating power (W m�1)
r, r0 position vector
R particle radius (=d/2) (m)
Re = Red particulate Reynolds number (uDd/mf)
s volumetric heat source (W m�3), or statistical

standard deviation
S least squares sum
t time (s)
T temperature (K)
TH enthalpic mean temperature (K)
uD, u Darcy (or superficial or filtration) velocity

(m s�1)
u* corrected Darcy velocity, (qcp)fu/(qcp)t

v local velocity (m s�1)
V volume of the representative averaging sphere

(m)
x, y, z space coordinates (m)

Xj sensitivity coefficient of temperature to para-
meter bj

Greek symbols

a, b vector of parameters
d Dirac distribution (s�1) or (m�1)
e volumetric fraction or porosity
k thermal conductivity (W m�1 K�1)
keq equivalent thermal conductivity (W m�1 K�1)
k, kx, ky thermal dispersion tensor and its coefficients

(W m�1 K�1)
Kf dispersivity tensor of the fluid phase

(W m�1 K�1)
l dynamics viscosity (kg m�1 s�1)
mf kinematic viscosity (m2 s�1)
q density (kg m�3)
r stochastic standard deviation

Subscripts

eq equivalent property of the homogenized porous
medium

exp experimental value
f fluid phase
s solid phase
t total, relative to both solid and fluid phases
ref relative to a reference temperature
loc relative to a local source or to a local Green’s

function
ave relative to an averaged source or to an averaged

Green’s function

Superscripts

~ Laplace transform
* normalized quantity using the microscopic scale

d

� normalized quantity using a mesoscopic scale D

_ statistical average

ˆ, est estimated value

1470 A. Testu et al. / International Journal of Heat and Mass Transfer 50 (2007) 1469–1484
heat transfer, techniques such as volume averaging of the
local equations can be implemented. This kind of technique
leads to various models such as the one-temperature model
or the two-temperature model. The parameters of these
models are the mean velocity of the flow and the thermal
dispersion tensor.

Yagi et al. [1] were the first to measure the effective axial
(or longitudinal, that is in the direction of the flow) thermal
‘conductivities’ of packed beds. Their axial steady state
temperature measurements were made using adiabatic dou-
ble wall evacuated glass pipes. The packed bed was heated
from the top by an infra-red lamp so heat penetrated
downwards into the bed, while air flowed counter currently
upwards through the bed from the bottom inlet. The
authors used a linear model to determine the longitudinal
thermal dispersion coefficient.

Votruba et al. [2] evaluated the effective axial thermal
‘conductivity’ from axial temperature distributions for dif-
ferent particle sizes. Measurements of the coefficients were
performed using a glass reactor similar to Yagi et al. [1].
Their results were summarized by a correlation giving the
effective axial Péclet number as a function of the fluid Péc-
let number. The coefficients of this correlation depend on
the size, shape and nature of the solid particles. Dixon
and Cresswell [3] derived a correlation between the effective
axial Péclet number and the particulate Péclet number.
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Gunn and De Souza [4] made measurements in transient
state. They carried out a periodic excitation at the entry of
the granular medium and measured the outlet response.
They used the two-temperature model for air flow through
a dispersed solid phase (glass beads). Because of a low sen-
sitivity of the temperature signal to the model parameters,
their results were mainly qualitative and only tendencies
could be evidenced.

Tsotsas [5] examined the existing types of models for
longitudinal thermal dispersion. Using a momentum anal-
ysis, he set up equivalence criteria between these models
and derived the velocity dependence of the longitudinal
thermal dispersion coefficient.

Concerning lateral or transverse thermal dispersion, that
is in the direction normal to the flow, Bauer and Schlünder
[6] generalised a heat transport model that is considered as
a reference. This model is widely used in the chemical engi-
neering community. It derives from an analogous mass dis-
persion model based on the assumption of a cascade of
perfectly mixed elementary reactors. Levec and Carbonell
[7] determined the transverse dispersion coefficient in the
stationary case and for local thermal equilibrium. Their
method is based on a two-phase model different from the
one temperature model presented in Section 2, in which
extra terms appear representing a coupling between solid
and fluid temperatures, see Zanotti and Carbonell [8].
One should note here that many authors evaluated the lat-
eral dispersion experimentally with experiments where the
heating source was located at the bed wall and temperature
measured in the core of the bed. In that type of configura-
tion the use of a simple dispersion model could be biased
because the near-wall region, where channeling effects take
place, cannot be homogenized, see Martin [9].

Metzger et al. [10] estimated the two dispersion coeffi-
cients for a packed bed of glass spheres through which
water flows. The one-temperature model based on the
notion of average enthalpic temperature as detailed in
Moyne et al. [11], see Section 2 below, was used. Thermo-
couples in the downstream neighbourhood of a line heat
source, corresponding probably to minimum channelling
effects, measured the temperature response to a step heat
input. Correlations were proposed to express the dispersion
coefficients, even if the lateral dispersion coefficient was not
estimated with a high enough precision for sensitivity
reasons.

The different correlations for the thermal dispersion
coefficients in the literature relate the dispersion coefficient
to either the Reynolds or Péclet number. They were often
constructed using a single fluid flowing through a given
bed.

In order to separate the effect of the Reynolds and Péclet
numbers, and to study the effect of the thermal properties
of the fluid, it is interesting to make experiments with dif-
ferent fluids in the same solid matrix. When a liquid flows
at a very low flow rate through a porous media, it is gov-
erned by Darcy’s law. Several numerical [12] and experi-
mental results [13,14] have shown that this law is valid
only in a narrow range of flow rates. In fact, when the flow
rate increases, the pressure drop does not remain propor-
tional to the filtration velocity. The dimensionless number
usually used to characterize the onset of this non-linear
behaviour is the Reynolds Number (Re) defined with the
superficial velocity and a characteristic local scale, which
is the sphere diameter for a bed of beads. It is generally
admitted that the onset of the non-Darcy flows occurs
for Re larger than 10. At high Reynolds number, the empir-
ical Forcheimer equation [15] is used. The use of the Rey-
nolds number is justified for explaining the variation of the
thermal dispersion coefficients with fluid velocity when dif-
ferent flow regimes occur.

In this work a pertinent form is looked first for the
correlation explaining the variation of the dispersion
coefficients (longitudinal and transverse) with the thermo-
physical characteristics and structure of the porous matrix
and with the fluid flow. A particular configuration, that will
be used later for estimating the thermal dispersion coeffi-
cients, is considered then. The end of this article is devoted
to the experimental estimation of both thermal dispersion
coefficients in a packed bed of glass beads with the same
method as Metzger et al. [10] but with a different fluid,
air, and to a comparison of the results for the two fluids
(air and water) once suitable correlations have been
constructed.
2. One-temperature model

The simplest homogeneous model that can be used to
describe thermal dispersion in a granular medium is based
on a local mean ‘enthalpic’ temperature TH defined at a
point P (and for a given time t) in the homogenized med-
ium. This temperature is the space average of the local tem-
peratures at the points P0 of the porous medium (P0

belonging either to the solid or fluid phase) located inside
a sphere of volume V(P,D) of diameter D and centred at
P. This sphere should constitute a representative volume
of the porous medium. This mean temperature is a
weighted average, the local heat capacities qcp(P0) being
used as weights [11]:

T H ðPÞ ¼
1

ðqcpÞtV ðP ;DÞ

Z
V ðP ;DÞ

qcpðP 0ÞT ðP 0ÞdV ðP 0Þ

¼ 1

ðqcpÞt
hHiðPÞ ð1Þ

where the total local volumetric heat is:

ðqcpÞtðP Þ ¼ hqcpiðPÞ ¼ efðqcpÞf þ esðqcpÞs; ð2aÞ

where ef and es are the local volume fractions of the fluid (f)
and solid (s) phases and (qcp)f and (qcp)s the corresponding
volumetric heat capacities. In the preceding equations,
H(P) is the local enthalpy by unit volume, H(P) =
qcp(P)T(P), and h i is the averaging operator, defined for
any space field f by:
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hf iðP Þ ¼ 1

V ðP ;DÞ

Z
V ðP ;DÞ

f ðP 0ÞdV ðP 0Þ: ð2bÞ

In the preceding equations time t has not been written as an
argument of the different functions, in order to simplify the
notation. Eq. (1) can be viewed as a filtering, in the data
processing meaning, of the local temperature field, the filter
used being a moving average of width D. For this homo-
genisation to be pertinent, the diameter D of the sphere
must be much larger than the local characteristic size of
the porous medium, here the average diameter d of the
grains, and much smaller than the characteristic size L of
the system that is modelled, the diameter of the fixed bed
reactor for a process engineering application for example.

The local mean temperature TH used here derives
directly from the enthalpic volume average hHi, which
means that it has an energetic meaning. As a consequence,
no a priori assumption of local thermal equilibrium is made
in its definition and in the use of the reduced one-tempera-
ture model that will be presented next. This reduced model
requires the definition of a thermal dispersion tensor k
whose coefficients can be considered as pseudo-conductivi-
ties depending on the nature, thermophysical properties
and geometry of the solid grains and of the fluid, as well
as on the local Darcy’s (or filtration) velocity uD. A convec-
tion–diffusion equation for the space and time variation of
the averaged temperature can be written:

ðqcpÞt
oT H

ot
¼ r � ðkrT H Þ � ðqcpÞfuD � rT H þ s ð3Þ

with:

uDðP Þ ¼ hvi ð4Þ

where v is the local fluid velocity, which is equal to zero in
the solid phase.

In this equation s is the volumetric heat rate of a source
that can depend on both time and space. One can notice
that the coefficient of the transient term is the total volu-
metric capacity (qcp)t while the advection term only uses
its fluid component (qcp)f. The preceding Eq. (3) can be
derived using either the volume averaging technique or
the homogenisation method for a spatially periodic porous
medium.
Fig. 1. Dimensions of the granular media and positions of thermocouples.
3. Experimental device and corresponding model

One of the methods for testing the validity of a model is
to build an experiment designed for estimating (in the sta-
tistical sense) the parameters present in this model using
measured output (here temperature measurements) for a
given (known) input (here some kind of thermal excitation,
that is a particular s function in Eq. (3)). Once these param-
eters estimated, it is possible to reconstruct the theoretical
output of the model (the theoretical thermograms here)
and to compare it to the experiment output (the experimen-
tal thermograms). A final step in the validation of the
model consists in comparing the theoretical output of the
model (with the previously estimated parameters) with
their experimental counterparts for different media, inputs
and/or measurement locations. That is this kind of
methodology based on the implementation of an inverse
experimental technique that has been implemented in the
experimental part of this work. The chosen experimental
configuration as well as the corresponding model is pre-
cised below.

A bed of monodisperse glass beads of diameter
d = 2 mm has been constructed by filling a box with the
beads. Its porosity was e = ef = 0.365. The heat source
was an electrically heated wire defining the z-direction
and set normally to the x–y plane and at the origin
(x = y = 0) of the coordinate system shown in Fig. 1.

The fluid flowed vertically downwards in the x-direction
normal to the wire, with a uniform filtration velocity
u = uDx in the x-direction, through the granular medium.
Starting from thermal equilibrium at temperature T0, that
is for equal temperatures for both the incoming fluid and
the uniform temperature bed, the wire was submitted to a
power step of lineic power intensity Q(W m�1) at time
t = 0. The medium was large enough to be considered as
infinite, which means that the one-temperature model tem-
perature response to this excitation is DT = TH � T0 and is
equal to zero at large distances from the source. Renaming
T the DT response and assuming that the principal direc-
tions of the dispersion tensor are the longitudinal (x) and
transverse (y) directions, Eq. (3) becomes:

ðqcpÞt
oT
ot
¼ kx

o2T
ox2
þ ky

o2T
oy2
� ðqcpÞfu

oT
ox
þ QdðxÞdðyÞHðtÞ

ð5Þ

where d(�) is the Dirac distribution and H(�) the Heaviside
function. In order to prevent any non-linear effect caused
by variation with temperature of the different thermophys-
ical properties of both fluid and grains – mass density,



Table 1
Thermal properties at 20 �C of the two phases of the granular bed. The
last two columns gives the corresponding properties of the homogenized
equivalent systems ((qcp)t, keq,e)

Water Air Glass Water/
glass

Air/
glass

(qcp) (kJ/m3) 4170 1.2 2080 2840 1320
k (W/m/K) 0.607 0.026 1 0.860 0.2
e 0.365 0.365
mf (m2/s) 0.101 � 10�5 1.57 � 10�5

Pr 7.02 0.7
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viscosity, thermal conductivities – the level of the heat step
Q was chosen low enough to get a temperature rise lower
than one Celsius degree. This assumption of constant dis-
persion coefficients kx and ky, volumetric heat capacities
and filtration velocity makes Eq. (5) linear. This equation
can be solved using the Green’s function technique [16]:

T ðx; y; tÞ ¼ Q

4p
ffiffiffiffiffiffiffiffiffi
kxky

p exp
ðqcpÞfux

2kx

� �

�
Z ðqcpÞ2

f
u2 t

4ðqcpÞtkx

0

exp � x2

kx
þ y2

ky

� �
ðqcpÞ2f u2

16kx

1

h
� h

 !
dh
h
:

ð6Þ

Either water or air could flow downwards through the
stacked bed shown in Fig. 1. The initial bench [10,19] that
used a water flow produced by a pump fed by a closed-loop
constant hydraulic head circuit, has been modified for an
air flow: a fan located in a cylindrical duct downstream
the setup aspired air from a high volume room upstream
through a second upstream cylindrical duct. The large
volume of the upstream room allowed a quasi-constant
temperature for the air input.

Thirteen thermocouples, of type E and of 127 lm diam-
eter, set parallel to the wire and located mainly down-
stream the heating wire, measured the temperature
response of the medium to the power step. The air velocity
could be measured by a hot wire anemometer in the down-
stream cylindrical duct. The thermal properties of both
phases and the equivalent properties of the homogenized
medium studied in this article are given in Table 1.

Measurements have been made for particulate Péclet
numbers Pe from 10 to 70 in the case of air flow, which cor-
responds to maximum filtration velocities close to 0.7 m/s.
For water flow the Péclet number varied between 10 and
130, with maximum filtration velocities of the order of
7 mm/s.
4. Pertinent correlations for the thermal dispersion

coefficients

The dispersion coefficients of the one-temperature
model, Eqs. (1)–(4), result from an up-scaling process. Their
values derive from a closure problem whose solution can be
found numerically only if the medium and its internal flow
are perfectly known. This knowledge must concern its struc-
ture, that is the location of the fluid/solid interface, the ther-
mophysical properties of the two phases as well as the
structure of the velocity field at the local scale. For a very
limited number of academic cases an analytical expression
can be found. Such is the case for kx in a periodic porous
medium where the unit cell corresponds to a fully developed
flow between two parallel plates where Taylor’s dispersion
occurs [11]. The internal structure of real porous media is
generally unknown at the local scale, which makes the
attempts of solution of the previous closure problem quite
academic. It is another path that will be followed here, that
is the construction of heat transfer correlations. These cor-
relations will not deal with a h coefficient, as in external
boundary layer flow or in internal duct flow, that is not per-
tinent in this kind of situation, but with the dispersion coef-
ficients themselves. In order to define the non dimensional
parameters that explain the variation of these coefficients
both the equations of the local coupled conduction–convec-
tion problem and of the corresponding one-temperature
model will be derived first. In a second stage these equations
will be written in a dimensionless form using suitable scales
for all the quantities, in order to make the structure of the
desired correlations naturally appear.

We consider the flow of a fluid in a porous medium, at
the local scale: all the thermophysical properties of both
fluid and solid phases are assumed to be constant. The
transfer and transport equations in the parts of the total
infinite volume X, occupied by the fluid (Xf) or by the solid
(Xs) phases, are:

r � v ¼ 0;
dv
dt
¼ ov

ot
þ v � rv

¼ � 1

qf

rp̂ þ vfr2v in Xf ð7aÞ

ðqcpÞf
dT f

dt
¼ ðqcpÞf

oT f

ot
þ v � rT f

� �
¼ kfr � rT f þ sf in Xf ð7bÞ

ðqcpÞs
oT s

ot
¼ ksr � rT s þ ss in Xs ð7cÞ

where v is the local velocity vector, p̂ ¼ p þ qgz the modi-
fied pressure where z is the height of the corresponding
point, g the gravity and p the pressure, qf and mf the density
and kinematics viscosity of the fluid, kf and ks the fluid and
solid conductivities and sf and ss the volumetric heat
sources in both phases. The accompanying interface,
boundary and initial conditions are:

T s ¼ T f and � ksrT s � ns

¼ �kfrT f � ns on oXsf ; ð7dÞ

T s � T f ! 0 and T s ! T ref as krk ! 1; ð7eÞ
T s ¼ T f ¼ T ref at t ¼ 0 in X ¼ XfUXs; ð7fÞ

where r = OP is the position vector of a point P, ns the
local normal unit vector at the solid–fluid interface oXsf.
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Tref is a reference temperature that is equal to the initial
(uniform) temperature and to the temperature at the
boundaries of the infinite medium. In order to completely
close the problem, it is necessary to add some initial and
boundary (or periodicity) conditions that involve pressure
and/or velocity for the fluid flow problem.

Reduction of the following equations can be made using
a local length scale, here an average pore or grain diameter
d, a reference average velocity v1, and a reference temper-
ature difference DTref = T0 � Tref. The new dimensionless
quantities are then:

r� ¼ r=d; v� ¼ v=v1; t� ¼ v1t=d; p̂� ¼ p̂=qfv
2
1;

T � ¼ ðT � T refÞ=DT ref ; s�s or f ¼ dss or f=½ðqcpÞfv1DT ref �:
ð8Þ

Eq. (7) become:

r� � v� ¼ 0;
dv�

dt�
¼ �r�p̂� þ 1

Re
r�2v� in X�f ð9aÞ

dT �f
dt�
¼ oT �f

ot�
þ v� � r�T �f ¼

1

RePr
r� � r�T �f þ s�f in X�f ð9bÞ

oT �s
ot�
¼ 1

RePr
ðqcpÞf
ðqcpÞs

ks

kf

r� � r�T s þ
ðqcpÞf
ðqcpÞs

s�s in X�s ð9cÞ

T �s ¼ T �f and � ks

kf

r�T �s � ns ¼ �rT �f � ns on oX�sf

ð9dÞ
T �s � T �f ! 0 and T �s ! 0 as kr�k ! 1 ð9eÞ

T �s ¼ T �f ¼ 0 at t� ¼ 0 in X� ¼ R3 ¼ X�f UX�s ð9fÞ

where Red is the particulate Reynolds number, Pr the Pra-
ndtl number, and d

dt the material derivative. The solution of
the previous system (9) can be written under the formal
form:

T � r�; t�ð Þ ¼
Z 1

t0�¼0

Z
r0�2X�

flocðr�; t�jr0�; t0�; bÞs�locðr0�; t0�Þdr0�dt0�;

ð10Þ

where T � ¼ T �f and s�loc ¼ s�f if r� 2 X�f and T � ¼ T �s and
s�loc ¼ s�s if r� 2 X�s .

b = (Red, Pr, ks/kf, (qcp)s/(qcp)f) is a vector that gathers
the four non-dimensional parameters that are present in
system (9). Eq. (10) shows that the reduced temperature
can be calculated through a space and time integration of
the product of the reduced volumetric heat source s�loc and
floc, which is the corresponding Green’s function of the sys-
tem [16]. It comes from the fact that the fluid flow problem
(9a), with initial and external boundary conditions, which
can be non-linear, is first solved to yield the reduced velocity
field v*. This steady state field is present simply as a struc-
tural non-uniform coefficient in the linear heat equation sys-
tem (9(a)–(f)) whose source term is s�loc. In our case, all the
thermophysical coefficients are constant, which means that
the time integral becomes a convolution product in time in
the case of a steady state flow (time invariant system).

The definition (1) of the average enthalpic temperature
of the one-temperature model can be re-written using Eq.
(10) after inversion of the order of the averaging operator
and of the space and time integration, which yields:

T H ðr; tÞ ¼ T ref þ
DT ref

ðqcpÞt

Z 1

t0�¼0

Z
r0�2X�

� hqcpðr00Þflocðr00�; t�jr0�; t0�; bÞis�locðr0�; t0�Þdr0�dt0�:

ð11Þ

Another reduction of Eq. (3) whose solution is the same
average temperature will be introduced now. It can be
made using the mesoscospic length scale D, the same refer-
ence velocity v1, and the same reference temperature differ-
ence DTref = T0 � Tref. The new dimensionless quantities
are then:

r� ¼ r=D ¼ ðd=DÞr�; u�D ¼ uD=v1;

t� ¼ v1t=D ¼ ðd=DÞt�; T �H ¼ ðhT i � T refÞ=DT ref ;

s� ¼ Ds=½ðqcpÞfv1DT ref � ¼ ðD=dÞs� ð12Þ

where s* corresponds to the same normalization as s�loc, s�f
and s�s in (8) and (10). With this new reduction, it is possible
to write a reduced form of (3):

oT �H
ot�
¼ r� 1

ðqcpÞtv1D
kr�T �H

� �
� ðqcpÞf
ðqcpÞt

u�Dr�T �H þ s�:

ð13Þ
Coming back to the non-reduced average temperature,
we get the following form for the solution of (13) with
the same reference temperature, initial and boundary
(r ? 1) conditions:

T H ðr; tÞ ¼ T ref þ DT ref

Z 1

t0�¼0

�
Z

X�
kaveðr�; t�jr0

�
; t0
�
; u�D; aÞs�ðr0

�
; t0
� Þdr0

�
dt0

�

ð14Þ
with:

a ¼ 1

ðqcpÞtv1D
k; ðqcpÞf=ðqcpÞt

� �
ð15Þ

kave being the corresponding Green’s function. It is possible
to make the same reduced integration variables as in Eq.
(11) appear, which yields

T H ðr; tÞ¼ T ref þDT ref

Z 1

t0�¼0

Z
X�

maveðr�; t�jr0�; t0�;cÞs�ðr0�; t0�Þdr0�dt0�

ð16Þ
with:

mave¼
d3

D3
kave

d
D

r�;
d
D

t�
d
D

r0�;
d
D

t0�;u
�

D;a

����� �
and c¼ uD

v1
;
d
D
;a

� �
Comparison of Eq. (16) with Eq. (11), which should give
the same average temperature for any point P(r) at any
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time t, under the assumption that the one-temperature
model is valid for a given configuration (porous medium,
flow and source), leads to the following identity for the
ratio s/sloc of the source terms:

sðr0; t0Þ
slocðr0; t0Þ

¼ hqcpflociðr�; t0�; bÞ
ðqcpÞtmaveðr�; t�jr0�; t0�; cÞ

: ð17Þ

For energy conservation reasons the left hand member of
this equation should be equal to unity if the one-tempera-
ture model is pertinent. As a consequence, one can write
the following identity:

maveðr�; t�jr0�; t0�; cÞ ¼
1

ðqcpÞt
hqcpflociðr�; t0�; bÞ: ð18Þ

In the case of a plug flow in the x direction in a homoge-
neous porous medium the filtration velocity uD is uniform
and, consequently, the reduced filtration velocity uD/v1
can be removed from the arguments of c in mave. As a
consequence, the different components of the c parameter
vector present in the left-hand side of Eq. (18) must depend
on their counterparts in b in the right hand side and, in
particular:

1

ðqcpÞtv1D
k ¼ kðRed ; Pr; ks=kf ; ðqcpÞs=ðqcpÞfÞ; ð19Þ

where k is a vector function, which represents the variation
of the three principal dispersion coefficients of the disper-
sion tensor. It depends on the location of the oXsf interface
between the solid and fluid phases. This means that, strictly
speaking, this function is attached to a particular structure
of the porous medium and to a particular value of the ratio
between the characteristic and averaging lengths d/D. We
focalize here on the case where the structure of the granular
medium is isotropic (case of a bed of spherical or of
ellipsoidal grains with random principal axes for example).
In these cases, if x is the direction of the plug flow, the
dispersion tensor is fully characterized by a longitudinal
component kx and a unique ky = kz transverse or lateral
component.

Eq. (19) can be multiplicated by the particulate Péclet
number Pe = RedPr, which yields

d
D
ðqcpÞf
ðqcpÞt

k
kf

¼ RedPr kðRed ; Pr; ks=kf ; ðqcpÞs=ðqcpÞfÞ ð20Þ

or

kx or y=kf ¼ gx or yðRed ; Pr; ks=kf ; ðqcpÞs=ðqcpÞf ; d=DÞ: ð21Þ

At this point we consider the limiting case where the d/D
ratio is small enough, which yields:

kx or y=kf ¼ gx or yðRed ; Pr; ks=kf ; ðqcpÞs=ðqcpÞfÞ: ð22Þ

Function g (for the longitudinal x or transverse y disper-
sion coefficient) represents the correlation that is to be
sought to explain thermal dispersion in an infinite homoge-
neous porous medium, that is far from the macroscopic
walls. Its arguments are linked to the filtration velocity,
to the fluid viscosity and to the thermal properties of the
fluid and solid phases. However, a priori, this function
has to be changed if the structure of the granular medium
is changed (change of granulometry or change of the shape
of the grains). An interesting way to describe this structural
dependence is to make the equivalent conductivity keq of
the homogenized medium, appear. This conductivity is
given in the last two columns of Table 1, for two solid/fluid
systems. Eq. (22) is thus written, for a zero velocity, which
also makes the Prandtl number and the volumetric capacity
ratio disappear:

keq=kf ¼ gxðRed ¼ 0;ks=kfÞ ¼ gyðRed ¼ 0;ks=kfÞ ¼ g0ðks=kfÞ:
ð23Þ

Combination of Eqs. (22) and (23) yields:

kx or y=keq ¼ fx or yðRed ; Pr; ks=kf ; ðqcpÞs=ðqcpÞfÞ: ð24Þ
Function g0 does not depend on the conductivity ratio only
but also on the structure of the porous medium. The effect
of the structure can be expressed by a model where the
porosity is present explicitly, see [2] for example. One can
expect consequently that function fx or y depends less on
the structure of the medium and on the ks/kf ratio than
function gx or y.

The preceding forms of the correlations for the disper-
sion coefficients were derived under the assumption of a
pertinent one-temperature model. The limits of this model
is studied in Appendix A, starting from a two-temperature
model [17]: it is shown that the use of the one-temperature
model is legitimate in our experimental configuration.

5. Parameter estimation technique and simulation of

inversion

A least square technique has been used here to estimate
the dispersion coefficients kx and ky present in the theoret-
ical model (6) for a given filtration velocity u, starting from
temperature measurements produced by several thermo-
couples located downstream the heating wire. The corre-
sponding experimental thermograms are plotted in
Fig. 3(a) (water/glass beads) and Fig. 3(c) (air/glass beads)
for thermocouples 2–7, see Fig. 1. In order to know
whether this estimation is possible, it is very interesting
to study the time variation of the reduced sensitivities bjXj

of temperature to the different bj parameters of the prob-
lem [18], with

b ¼ kx ky u½ �t and X j ¼
oT
obj

: ð25Þ

The reduced sensitivity coefficients bjXj as well as the re-
duced sensitivities to the two coordinates of thermocouple
2, LXx and LXy, with L = 1 cm, are plotted in Fig. 2(a) and
(b) (water flow) and (air flow). These sensitivities corre-
spond to the same Péclet number Pe = 9.06 for an excita-
tion Q = 70 W/m (water case) or Q = 7.5 W/m (air case).

The sensitivities of the water case, Fig. 2(a), are first dis-
cussed. It is very clear that, at this location, the sensitivities



Fig. 2. Relative sensitivities. (a) Water flow; Pe = 9.06; Q = 70 W/m; kx = 2.4 W m�1 K�1; ky = 1 W m�1 K�1; u = 0.655 mm/s. (b) Air flow; Pe = 9.06;
Q = 7.5 W/m; kx = 0.26 W m�1 K�1; ky = 0.19 W m�1 K�1; u = 9.7 cm/s.

Fig. 3. Transient temperature responses and residuals for water and air flows for Pe ffi 30. (a) Experimental and reconstructed responses, water flow; (b)
temperature residuals, water flow; (c) experimental and reconstructed responses, air flow; (d) temperature residuals, air flow.
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of temperature to velocity u and to location y are the high-
est. Let us note that Eq. (6) shows the sensitivity to this y-
location is equal to zero if the temperature is measured in
the symmetry axis (y = 0). One can also notice that sensi-
tivities to ky and to y are nearly proportional. The same
is true for sensitivities to u and to x, for short times only,
but these times bring most of the information on the differ-
ent parameters. This means that, without any information
on the exact location of the thermocouples, it will not be
possible to estimate the b parameters. The same is true if
more than one thermocouple is used for inversion because
of the addition of new location parameters. The different
sensitivities of the air case shown in Fig. 2(b) vary in the
same manner, but one can notice that sensitivity to the y
location is now lower than sensitivity to ky. This means that
the uncertainty in the y-position of the thermocouples will
be less penalizing for the estimation of the transverse dis-
persion coefficient than in the water case. Such a problem
caused a very rough estimation of ky on the same set-up
in the water case [10].

We briefly recall here the estimation technique already
used by Metzger et al. [10,19]. In order to take into account
the uncertainty in the exact (xi, yi) location of thermocou-
ple number i, that may differ from its nominal (xnom

i , ynom
i )

location, a penalized least squares sum has been minimized
here (Baye’s inversion):

SðaÞ ¼ 1

r2
T

XNtc

i¼1

XNt

k¼1

ðT exp;ik � T ikðaÞÞ2 þ
1

r2
loc

XNtc

i¼1

ðxnom
i � xiÞ2

þ 1

r2
loc

XNtc

i¼1

ðynom
i � uiÞ2 ð26Þ

where a ¼ ½kx; ky ; u; ðxi; yiÞi¼1;Ntc
�t is the new extended

parameter vector to be estimated, Ntc the number of ther-
mocouples used (thermocouples 2–7 here, see Fig. 1) and
Nt the number of measurement times. Texp,ik is the temper-
ature measured at the (exact) location of the ith thermo-
couple and tk, the kth time of measurement. Tik(a) =
T(xi,yi,zi, tk;b) is the corresponding theoretical temperature
given by Eq. (6)

The experimental temperature standard deviation rT

can be measured in a steady state situation (rT =
0.02 �C), that is without any excitation Q, and it can be
assumed that the standard deviation of the location of a
Table 2
Monte Carlo simulations of inversion for air or water flow through a bed of

j Parameter Exact
value aj

Average
estimation �̂aj

Estim
bias b

Air 1 kx (W K�1 m�1) 0.962 0.984 +0.02
2 ky (W K�1 m�1) 0.256 0.246 �0.01
3 u (m s�1) 0.353 0.355 +0.00

Water 1 kx (W K�1 m�1) 60 60.321 +0.32
2 ky (W K�1 m�1) 3 2.681 �0.32
3 u (mm s�1) 6.288 6.306 +0.01
hot junction, that is a measure of its displacement, is of
the order of one bead radius (rloc = 1 mm).

In order to assess the quality of the estimation and to
study the effect of the temperature and location noise on
the estimator obtained by minimization of sum (26), it is
very interesting to implement it on synthesized measure-
ments, that is to use a Monte Carlo process: the exact
temperature response of model (6) is noised with an
independent additive normal random noise of zero mean
and standard deviation rT, which yields the simulated
experimental temperatures Texp,ik. The same technique is
implemented with both exact thermocouple coordinates
(xi,yi) that are noised in the same way with a noise of stan-
dard deviation rloc to produce the nominal locations (xnom

i ,
ynom

i ). A Gauss-Newton minimization of S yields an estima-
tion â of the parameter vector a. If 400 simulations of this
type are made with the corresponding inversions, 400 esti-
mates âðnÞj are available for the jth parameter of â, n being
the inversion number. It is then possible to reach the statis-
tical distribution of each estimated parameter (its histo-
gram) and to calculate the dispersion (standard deviation
sj) of each estimate as well as its bias bj, that are:

bj ¼ �̂aj � aj and

sj ¼
1

400

X400

n¼1

ð�̂aðnÞj Þ
2 � ð�̂ajÞ2 with �̂aj ¼

1

400

X400

n¼1

�̂aðnÞj : ð27Þ

Such estimates are given in Table 2 for air or water flow
through the glass beads. They correspond to the positions
of thermocouples 2–7 located at x = 4, 6, 8, 10, 12 and
14 cm with an off-axis displacement y = 2.5 mm, and to a
time step of 0.15 s, with a final time of 900 s for air, the cor-
responding values being 0.15 s and 45 s for water. One can
use here the (jbjj + sj)/aj ratio (relative error) as an index of
quality of inversion for parameter aj.

The kx estimations have the same quality for air and
water with ‘relative errors’ smaller than 3%: bias is larger
for air but it is compensated by a lower dispersion. For
the ky estimations the ‘relative error’ is still acceptable for
air (5%) but too large for water (21%) to yield precise val-
ues; this explains the low precision estimation of ky already
mentioned above [10]. For both fluids the filtration velocity
is the parameter that is estimated with the maximum preci-
sion (relative errors lower than 2%). This confirms the pos-
sibility of estimating the transverse dispersion coefficient
glass beads

ation

j

Estimation standard
deviation sj

Bias/
dispersion
jbjj/sj

Relative error
(jbjj + sj)/aj

2 0.008 275% 3%
0 0.003 336% 5.2%
2 0.004 50% 1.7%

1 1.009 32% 2.2%
9 0.310 106% 21%
8 0.033 55% 0.8%
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with a very good precision for air, and with a lower preci-
sion for water.

In this problem, the estimation bias on the different
parameters caused by the non linear character of the esti-
mator can become higher than its standard deviation, see
the jbjj/sj column in Table 2.
6. Experimental estimation of the dispersion coefficients

The experimental and recalculated thermograms (ther-
mocouples 2–7) as well as the temperature residuals are
shown in Fig. 3(a) and (b) for water flow and in Fig. 3(c)
and (d) for air flow through the 2 mm glass beads. The
Péclet numbers are close for the two cases (Pe ffi 30). The
temperature residuals (Texp,ik � Tik(a)) are plotted as
functions of time for each thermocouple.

Their quadratic mean is lower than 30 mK and identical
for the two fluids. The low level and the non correlated
shape of the residuals show that the one-temperature
model fits very well the experimental curve for both flows.
One can notice that the measurement duration is about 10
times larger for air than for water. This can be explained by
the fact that the energy equation of the one-temperature
model can be normalized by its division by the total heat
capactity (qcp)t to make a corrected velocity u* = (qcp)fu/
(qcp)t appear. For a same Péclet number for air and water
flow through the same bed, the ratio of the corresponding
corrected velocities become:

u�water

u�air

¼ kwater

kair

ðqcpÞt air=glass

ðqcpÞt water=glass

	 10: ð28Þ
ig. 4. Estimation results for the longitudinal dispersion coefficient
ater– and air–glass beads systems): Effect of the Reynolds number (a)

ormalization by the fluid conductivity; (b) normalization by the
quivalent conductivity of the homogenized medium and unique correla-
on for both fluids.
7. Experimental correlations for the dispersion coefficients

7.1. The longitudinal dispersion coefficient

Experiments have been made with water flow through
2 mm diameter glass beads and with air flow through 2
and 3 mm diameter glass beads. The measured porosity
of the beds is e = 0.365. For both cases the velocity has
been estimated from inversion of the temperature measure-
ments and the particulate Reynolds or Péclet numbers have
been constructed with the corresponding bead diameter d.
Usually experimental correlations for the dispersion coeffi-
cients present the variation of this coefficients with the Péc-
let number Pe = RePr, that is the only reduced number
present in the fluid phase reduced energy equation. This
presentation is legitimate if dispersion results concerning
only one single fluid are given. The experiments presented
here correspond to completely different intervals of Rey-
nolds number and consequently to different flow regimes
in the porous medium. They are in the 0.5–18 range for
water, which corresponds to the Darcy regime while they
are in the 12–110 range for air flow, which corresponds
to the inertial regime described by Forcheimer’s equation,
that starts for Reynolds number between 1 and 10 for a
three-dimensional flow around spheres [12]. So, a Péclet
number of 30 corresponds to a Reynolds number around
4.3 for water (Darcy regime) and close to 43 for air (inertial
regime). The experimental variations of the estimations of
kx with the fluid (water or air) Reynolds number Re are
shown in Fig. 4(a) (normalization by the fluid conductiv-
ity). The estimates have not been subjected to any bias
correction here. One can notice that the dispersion of the
estimations of kx agrees with the theoretical Monte Carlo
simulations shown in Table 2, even if some extra dispersion
is probably due to slight temperature variations of the
incoming air depending on the day the experiment was
made. These ambient temperature variations can have an
effect on both water and air conductivities whose ratio
appear in the form of the correlation (22) giving kx/kf.
One can verify that the size of the beads has no effect on
dispersion in air.
F
(w
n
e
ti



Fig. 5. Estimation results for the longitudinal dispersion coefficient
normalized by the fluid conductivity, effect of the Péclet number: (a)
dynamic contribution, water– and air–glass beads systems (b) comparison
with literature data, air–glass beads systems.
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We have modelled our results in water by a power law
correlation [10,19]:

kx

kf

¼ keq

kf

þ 0:0731Pe1:59 ¼ keq

kf

þ 1:61Re1:59

for 0 < Re < 18 and Pr ¼ 7:02: ð29Þ

A correlation of a similar form can be found for the air re-
sults [20]:

kx

kf

¼ keq

kf

þ 0:211Pe1:45 ¼ keq

kf

þ 0:126Re1:45

for 12 < Re < 130 and Pr ¼ 0:7: ð30Þ

It is interesting to notice here that the constraint that was
put on both correlations to pass through the point at zero
velocity kx = keq does not seem to distort the correspond-
ing curves.

The preceding results for the water/glass beads and air/
glass beads systems are in the [0;130] range of Reynolds
number. It is possible to look for a unique correlation of
the form (24) for both systems: this correlation must also
be valid for a zero velocity where kx = ky = keq:

kx

keq

¼ 1þ kf

keq

eð1� eÞRe1:5 8:87ðPr�0:7Þ�0:543ðPr�7:02Þ
6:32

� �
:

ð31Þ

This correlation has been constructed through a linear inter-
polation of Eqs. (29) and (30) with respect to the Prandtl
number of the fluid phase, with a fixed 1.5 exponent for
the Reynolds number that lies in-between the water (1.59)
and air (1.45) exponents. The porosity factor e(1 � e) in
the second term of the right-hand member makes this corre-
lation valid for pure fluids (e = 1, kx = ky = keq = kf) and for
pure solids (e = 0, kx = ky = keq = ks). One weakness of this
correlation concerns the absence of the volumetric capacity
ratio of the two phases in the arguments present in its right-
hand member. Only experiments with different solid/fluid
pairs would be able to precise this dependence. Both the
experimental points for air and water as well as the previous
correlation (31) have been plotted in Fig. 4(b). The correla-
tion models our measured points in a satisfactory way.

Another interesting way of presenting the dispersion
results consists in plotting the dynamic part (kx � keq) of
the dispersion coefficient, normalized by the fluid conduc-
tivity kf, as a function of the particulate Péclet number
for both systems. Such a presentation is shown in Fig. 5(a).

In this Péclet representation the relative effect of the Péc-
let number on the dynamic component of the longitudinal
dispersion coefficient seems to be greater for air than for
water flow. Normalization by the equivalent conductivity
would imply the opposite conclusion.

Fig. 5(b) shows a comparison of our experimental results
for the longitudinal dispersion coefficient for the air/glass
beads system (2 mm diameter), plotted versus the Péclet
number, with Tsotas’s model [5], Levec and Carbonell’s
correlation [7] and the experimental results of Gunn et al.
[4] and Yagi et al. [1] for the same system. Apart from Gun’s
results, all the previous data agree very well with ours
for Péclet numbers up to 50. Beyond this value Levec and
Carbonell’s correlation is very close to our results.

7.2. The lateral dispersion coefficient

The experimental estimations of the lateral dispersion
coefficient, normalized here with the air conductivity,
are plotted versus the particulate Reynolds number in
Fig. 6(a). One can verify that the diameter of the beads,
2 or 3 mm, has no effect on the dispersion coefficient in this
representation.

A corresponding correlation has been looked for under
the following form:

ky

kf

¼ Ay þ ByRe ¼ 6:40þ 0:0788Re ¼ 6:40þ 0:113Pe

for 12 < Re < 130 and Pr ¼ 0:7: ð32Þ

One can notice here that, contrary to what has been done
in Section 7.1, the correlation has not been imposed to
go through the point corresponding to a zero velocity



Fig. 6. Estimation results for the lateral dispersion coefficient normalized
by the fluid conductivity, effect of the Reynolds number: (a) air–glass
beads systems; (b) comparison with literature data, water– and air–glass
beads systems.

Fig. 7. Comparison between water– and air–glass beads lateral dispersion
results; (a) normalization by the homogenized medium equivalent
conductivity, effect of the Reynolds number; (b) dynamic contribution,
normalization by fluid conductivity, effect of the Péclet number.
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(Ay 6¼ keq/kf). This correlation is valid only for Reynolds
numbers higher than 12. One can note that ky and keq are
nearly equal for a Reynolds number equal to 12. Since
the equivalent conductivity keq of the air/glass bead system
is well known, it seems probable that the lateral dispersion
coefficient ky does not differ much from its static value keq

for Reynolds numbers lower than 12. This effect is specific
to the Darcy regime in the porous medium (or to the Stokes
regime in its fluid phase): in this regime the shape of the
streamlines does not vary with the flow rate level [12]. This
flow property could be related to the fact that the lateral
dispersion coefficient keeps its static value, even if this link
remains to be explained.

We have plotted our ky results, normalized by the fluid
conductivity, see Fig. 6(b), or by the equivalent conductiv-
ity of the fluid/glass beads system, see Fig. 7(a), as well as
those of Bauer and Schlünder [6] and Levec and Carbonnel
models [7] for the air/glass beads systems. The experimen-
tal results by Metzger et al. [10] for a water/glass beads sys-
tem are also plotted.
Mezger’s results, whose precision is lower than the air/
glass beads results, correspond to the following correlation:

ky

kf

¼ keq

kf

þ CyRePr with Cy ¼ 0:04
 0:01

for 0:5 < Re < 18 and Pr ¼ 7:02: ð33Þ

One clearly sees that, for the same Reynolds number, lat-
eral dispersion for a water flow exhibits a completely differ-
ent behaviour than for an air flow. It is also clear that
Bauer and Schlünder overestimate our results while it is
the opposite for Levec and Carbonnel, but only for Rey-
nolds numbers over 50.

The dynamic part (ky � keq) of the estimation of the lat-
eral dispersion coefficient, normalized by the fluid conduc-
tivity kf, as a function of the particulate Péclet number for
both systems is plotted in Fig. 7(b). The air/glass curve rep-
resents the results of this work while the water /glass curve
represents the best estimations for the water glass experi-
mental results of Metzger [10]. These results were obtained
for a thermocouple whose location residuals (x,y) were
very low. When compared to the same representation for



Fig. 8. Anisotropy ratio of the thermal dispersion coefficients kx/ky for the
air/glass beads system.
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longitudinal dispersion, see Fig. 5(a), one clearly sees that
the velocity effect is clearly lower for lateral dispersion.

The anisotropy effect of the thermal dispersion tensor,
that is the variation of the kx/ky for the air/glass beads sys-
tem with the Reynolds number, is presented in Fig. 8. This
variation seems to be linear up to Reynolds numbers close
to 80.

8. Conclusions

The thermal dispersion model that uses only one ‘enthal-
pic’ average temperature obtained from a up-scaling pro-
cess has been presented here for an air flow through a
bed of glass beads. An experimental configuration has been
designed for measuring, by an inverse technique, the two
coefficients of this model, the longitudinal and lateral ther-
mal dispersion coefficients. The functional form of the
experimental correlations that explain the variation of the
dispersion coefficients with the structural and thermophys-
ical properties of the solid and fluid phases of the granular
medium, and on the flow velocity, has been established on
a theoretical basis. The effect of a possible temperature dif-
ference between both phases and on the nature of the out-
put signal of the thermocouple immersed in the granular
medium has been scrutinized using a two-temperature
model adapted to the granular structure of the porous med-
ium. This study shows that the temperature differences
between the two phases can be neglected. The specific
inverse estimation technique which allows uncertainties in
the locations of the thermocouple hot junctions (Bayes’s
estimation) has been developed and the estimation errors
in terms of standard deviations and bias have been assessed
using Monte Carlo simulations of inversion. Two correla-
tions, valid for particulate Reynolds numbers from 12 to
130 have been established. Comparisons have been made
with previous similar estimations of the dispersion coeffi-
cient for water flow through the same glass beads for Rey-
nolds numbers up to 18. Future work will be devoted to
modelling and evaluating experimentally the thermal con-
sequence of the channelling effects near the solid wall lim-
iting the extent of this type of bed using the thermal
dispersion correlations that have been developed here for
the core region.

Appendix A. Thermal equilibrium problem and

Coats–Smith model

In the experiments that were devoted to the estimation
of the coefficients, kx and ky, it has been assumed that
the one-temperature model could be used for both water
and air flows through glass beads. Temperature measure-
ments corresponding to the configuration presented in
Fig. 1 were made using thermocouples, whose hot junc-
tions had a diameter of the order of 0.2 mm. These thermo-
couples were inserted in-between the glass beads, of
diameter d = 2, R = 2 mm. This means that, rigorously,
the measured temperature is the fluid temperature and
not the average ‘enthalpic’ temperature of the one-temper-
ature model defined by (1). One can wonder then whether
temperature differences between fluid and solid could build
up locally, which could bias our results, in particular in the
air flow case where the fluid diffusion time R2/af is a lot
shorter than the corresponding time R2/as in the solid
phase.

In order to assess the magnitude of this possible temper-
ature desequilibrium, it is possible to use a two-tempera-
ture model. This type of model requires the introduction
of the intrinsic average temperatures in the fluid and solid
phases [21] that are defined below:

hT aiaðPÞ ¼
1

V aðP ;DÞ

Z
V aðP ;DÞ

T ðP 0ÞdV ðP 0Þ; ðA:1Þ

where a = s or f and where Va is the corresponding volume
of the a phase in the representative volume of the porous
medium, here the sphere of diameter D(V = VfUVs), see
Section 1. The average ‘enthalpic’ temperature can be cal-
culated once the two intrinsic average temperatures are
known:

T H ¼
ðqcpÞfe
ðqcpÞt

hT fif þ
ðqcpÞsð1� eÞ
ðqcpÞt

hT sis: ðA:2Þ

It is interesting to use here the Coats–Smith model [17], a
two-temperature model, to assess the difference between
Ts and Tf. This model was derived for mass diffusion in a
double porosity porous medium (in the sense of the peri-
odic homogenisation technique), that is a medium where
a stagnant fluid volume is present in some part of the por-
ous medium while fluid can flow in its complementary part.
An analogous model can be used here for heat transport
with pure conduction in the solid grains and convection
in the fluid phase. It is assumed here that no volumetric
heat source is present in the solid phase. The heat balance
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for the fluid phase intrinsic temperature is written in this
case:

ðqcpÞf e
ohT fif

ot
þ uD � rhT fif

 !
¼ r � ðKfrhT fifÞ þ qs!f þ s in X ðA:3Þ

where the dispersivity tensor Kf corresponds to a disper-
sion restricted to the fluid phase, assuming impervious
boundary conditions at the fluid–solid interface. Two
source terms are present in this equations: s is a volumetric
heat source present in the fluid phase while qs?f corre-
sponds to the heat flux exchanged at the solid/fluid inter-
face oXsf, that is the flux that stems from the solid
temperature gradient at the solid/fluid interface in the
sphere of volume V:

Vqs!f ¼ �
Z

oV sf

ksrT s � nsfdS: ðA:4Þ

It is possible to write the heat diffusion equation for this
local temperature in the solid phase

ðqcpÞs
oT s

ot
¼ r � ðksrT sÞ in V s: ðA:5Þ

Application of the solid phase averaging operator (A.1) to
this equation yields the heat balance equation for the solid
phase intrinsic temperature

ðqcpÞs
ohT sis

ot
¼ 1

V s

Z
V s

r � ðksrT sÞdV

¼ 1

V s

Z
oV sf

ksrT s � nsf dS

¼ � 1

ð1� eÞ qs!f in X: ðA:6Þ

The boundary condition of Eq. (A.5) is given here by an
imposed fluid temperature Ts = Tf at the boundary oVsf

of the solid particles present in the sphere.
We assume here that, at the local scale, the fluid temper-

ature Tf is uniform in the fluid part Vf of volume V and
that, at initial time, the whole temperature field in X is uni-
form at a reference temperature Tref, with Tref = 0, see Eq.
(7f). With these conditions, Eq. (A.5) can be written in the
Laplace domain:

r � ðksreT sÞ ¼ ðqcpÞspeT s in V s with eT s ¼ eT f in oV sf

ðA:7Þ
Since system (A.7) is linear with a unique excitation Tf(t),
its solution is a convolution product in time and a simple
product in the Laplace domain, and the solid phase averag-
ing operator (A.1) can be used:eT sðPÞ ¼ ~eðP ÞeT f ) heT sis � eT f ¼ ðh~eis � 1ÞeT f ; ðA:8Þ
where e is the Green’s function of the problem that depends
both on point P and on time t. The Laplace transform can
be applied to Eq. (A.4), and substitution of the Laplace
transform (A.8) of the fluid temperature yields:
~qs!f ¼ asfp~hðheT sis � eT fÞ ðA:9Þ

where asf ¼ joV sf j
V is the specific area, and p~h ¼ 1

ð1�h~eisÞ
1
joV sf jR

oV sf
kspr~e � nsf dS.

A usual approximation, that will be valid for the large
time values, is given by: h1 ¼ limp!0ðp~hÞ.

The heat exchange between the two phases, per unit vol-
ume of porous medium, can be expressed using a convolu-
tion product, noted here by a star, in the time domain, that
is,

qs!f ¼ asfh �
o

ot
ðhT sis � T fÞ 	 asf h1ðhT sis � T fÞ: ðA:10Þ

The ‘volumetric’ heat exchange impedance h or the h1
coefficient can be calculated in the case of spherical grains.
For a uniform temperature Tf(t) of the fluid at the local
scale, and a zero uniform initial temperature for the whole
system, the intrinsic average solid temperature hTsis is in
fact the average temperature of the local internal tempera-
ture field in the volume Vsphere of the grain, that is one-
dimensional in the radial (r) direction. This means that
one can take Vs = Vsphere for this averaging

hT sisðtÞ¼
1

V sphere

Z R

0

T sðr; tÞð4pr2Þdr with V sphere¼
4

3
pR3:

ðA:11Þ

The solution of (A.7), with $2 = o2/or2 + (2/r)o/or, is:eT s ¼ R
r

sinhðkrÞ
sinhðkRÞ

eT f ¼ ~eeT f with k2 = p/a.

The Laplace transform of the Green’s function e allows
the calculation of the volumetric impedance p~h:

p~h ¼ ks

R
q2ðq coth q� 1Þ

3ðq coth q� 1Þ � q2
with q ¼ R

ffiffiffiffiffiffiffiffiffi
p=as

p
: ðA:12Þ

An asymptotic series expansion can be found for low val-
ues of p and consequently, of q. This development is valid
for large times, that is under quasi (local) steady state
conditions:

q coth q ¼ 1þ 1

3
q2 þ 1

45
q4 þOðq6Þ ) p~h ¼ 5ks

R
ð1þOðq2ÞÞ:

ðA:13Þ

This gives the value of the asymptotic ‘volumetric’ heat ex-
change coefficient h1 = 10ks/d while the specific surface is
asf = 6(1 � e)/d for a granular bed of solid spheres. The
two coupled Eqs. (A.3) and (A.6) of the Coats–Smith
two-temperature model can be solved in a two dimensional
case for a uniform filtration velocity u = uDx and for the
following form of the interface heat flux and of the source
term:

qs!f ¼ asfh1ðhT sis � hT fifÞ and s ¼ QdðxÞdðyÞHðtÞ:
ðA:14Þ



Fig. A. Simulated thermograms – Coats–Smith model. (a) Temperatures of fluid and solid phase and average enthalpic temperature (y = 0) for Pe = 35,
Q = 10 J m�2; kx = 1.15 W m�1 K�1; ky = 0.267 W m�1 K�1. (b) Difference between the temperatures of the fluid and solid phases.

A. Testu et al. / International Journal of Heat and Mass Transfer 50 (2007) 1469–1484 1483
The solution, in the Laplace domain, is:

heT fif ¼
Q

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
KfxKfy

p 1

p
exp

ðqcpÞf ux
2Kfx

� �

� K0

x2

Kfx
þ y2

Kfy

� �1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘2 þ ðqcpÞ2f u2

4Kfx

s0@ 1A ðA:15Þ

heT sis ¼
asfh1

ð1� eÞðqcpÞsp þ asf h1
heT fif ðA:16Þ

with

l2 ¼ p eðqcpÞf þ ð1� eÞðqcpÞs
asfh1

ð1� eÞðqcpÞsp þ asfh1

� �
:

Numerical Laplace inversion of Eqs. (A.15) and (A.16), see
[22], making the coefficients of the dispersitivity tensor Kf

equal to the dispersion coefficients kx and ky of the one-
temperature model, allows the calculation of the solid
and fluid temperature responses heT sis and heT fif and, con-
sequently to the reconstruction of the average temperature
TH according to (A.2).

The three temperature curves have been plotted in
Fig. A(a), for the air/glass beads system, for different down-
stream locations x (for y = 0), see Fig. 1. The Péclet number
is equal to 35 here and the corresponding values of the dis-
persion coefficients stem from the experimental correlations
(29) and (30). The three curves overlap and cannot be sep-
arated: the fluid, solid and average temperature responses
are equal in practice. The temperature difference between
fluid and solid is magnified in Fig. A(b). For a total temper-
ature increase close to 1 K, the maximum difference is equal
to 2 � 10�3 K for x = 4 cm. This maximum temperature
difference occurs at the half rise time (50 s approximately
for x = 4 cm, 110 s for x = 8 cm and 170 s for x = 12 cm)
and this difference decreases later on to vanish completely
for steady state conditions. The average temperature curve
TH, nearly equal to the solid temperature here, corresponds
also to the output of the one temperature model (6).
Other simulations have shown that the thermal desequi-
librium between fluid and solid increases with lower values
of the solid phase conductivity. A solid conductivity equal
to the conductivity of air (ks = 0.026 W m�1 K�1) yields
maximum temperature differences of the order of 0.1 K
for a maximum temperature rise close to 1.3 K (for
x = 4 cm). This very low level of solid conductivity can
only be met for aerogel grains where Knudsen effect (rare-
fied gases) takes place because of the nanometric scale of
the pores. One can conclude that, for common levels of
the solid conductivity, thermal desequilibrium does not
appear, even under transient conditions. This conclusion
is only valid if no heat source – a chemical reaction for
example – is present in the solid or fluid phase close to
the locations where these temperatures are observed.
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